In this article, we study the algorithmic calculation of present values greeks for callable exotic instruments. The speed of greeks evaluations becomes important with recent initial margin rules, including the ISDA standard model SIMM, requiring sensitivity calculations for non-cleared deals (e.g. callable exotic/structured products) for a large set of risk factors and on a daily basis.

In general, present values of callable trades are obtained by the backward repetitive application of conditional expectation via least-squares Monte Carlo (regression) and arithmetic operations encoded in so called pricing (payoff) script. By nature, this pricing procedure is known to be computationally intensive leading to very slow greeks, if computed by a simple bump-and-reprice. The fast alternative is the adjoint differentiation (AD) method. However, a direct application of the AD is not straightforward because regressions introduce path interdependency, whereas traditional AD is applied on a path-by-path basis.

We describe how to extend the traditional AD method to include the regressions. Usually, the procedure must include the recording of information in a data structure, often referred to as the instrument tape, during the backward pricing. This is followed by a subsequent “playback” of the tape in which the recorded information is used to compute the greeks. The tape adds a significant complexity to the AD implementation and can introduce memory issues (due to the significant storage demands), coding and debugging difficulties, etc.

Next, we propose a new tapeless differentiation method, called backward differentiation (BD), for exotic deals. It is applied during the backward pricing procedure following the payoff script. Importantly, it completely avoids the tape and all of its related complications.

We demonstrate the efficiency of the BD on the example of a Bermudan swaption calculated with a one-factor Hull-White model. For 50–100 greeks, the BD calculation time is only 2–6 times slower than a single pricing which leads to up 20 times acceleration with respect to the bump-and-reprice. We also give a numerical convergence analysis demonstrating the high quality of the BD greeks.

Complete the form to download this research paper, “Algorithmic Differentiation for Callable Exotics”

About the Author:

Dr. Alexandre Antonov
Dr. Antonov was recently recognized with the honor of Risk Magazine’s 2016 Quant of the Year. He first began studying Physics
and Mathematics at the Moscow Institute of Physics and Technology, followed by the Landau Institute for Theoretical Physics (PhD in 1997) and The Laboratory of Theoretical and High Energy Physics at the University of Paris VI. In March 1998 Alexandre he joined Numerix based in Paris taking on a number of positions during his tenure with the company including Quantitative Analyst, Senior Quantitative Analyst, Vice President and Senior Vice President. During the course of his career Dr. Antonov has had over twenty articles published in industry journals, including six that have appeared on the pages of Risk Magazine.

Download Numerix Research Paper

Complete the form below to download this complimentary research paper.

Select Form: 

Form #5: Research

Keep me informed of future research from Numerix:

Sign me up to receive "Derivative Insights & Innovations" monthly newsletter by Numerix:

* Required fields
on-demand webinar

The End of LIBOR: Implications and Preparing for 2021

journal issue

Numerix Journal Vol. 4, No. 2

live webinar

The End of LIBOR: Implications and Preparing for 2021

product collateral

Numerix Oneview Graph Framework Fact Sheet

on-demand webinar

Tipping Points for Legacy Risk System Replacement: The CRO View

conference presentation

Margin Valuation Adjustments

newsletter issue - Nov 9, 2017

Derivative Insights & Innovations - November 2017 Issue

video blog

Technology in Fixed Income Trading

content collection

NEXT 365

numerix conference

NEXT 2017 - Meet our Speakers

numerix conference

NEXT 2017 Agenda - Learn about our Business & Tech Tracks

analyst report, white paper

Aite: Risk System Replacement Pitfalls and Lessons Learned